Flow and Heat Transfer Characteristics Downstream of a Porous Sudden Expansion: a Numerical Study
نویسنده
چکیده
Incompressible, axisymmetric laminar flow downstream of a porous expansion is simulated. Effect of the Darcy number and inertia coefficient on flow and heat transfer characteristics downstream of the expansion is investigated. The simulation revealed circulation downstream of the expansion. Decreasing the Darcy number is shown to decrease the circulation region. The Nusselt number, friction coefficient, and pressure drop are shown to increase, while reattachment and location of maximum heat transfer move upstream with decreasing Darcy number. Similar effects are observed with increasing inertia coefficient.
منابع مشابه
Study of MHD Second Grade Flow through a Porous Microchannel under the Dual-Phase-Lag Heat and Mass Transfer Model
A semi-analytical investigation has been carried out to analyze unsteady MHD second-grade flow under the Dual-Phase-Lag (DPL) heat and mass transfer model in a vertical microchannel filled with porous material. Diffusion thermo (Dufour) effects and homogenous chemical reaction are considered as well. The governing partial differential equations are solved by using the Laplace transform method w...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کاملHeat Transfer Characteristics of Porous Radiant Burners Using Discrete-Ordinate Method (S2-Approximation)
This paper describes a theoretical study to investigate the heat transfer characteristics of porous radiant burners. A one dimensional model is used to solve the governing equations for porous medium and gas flow before the premixed flame to the exhaust gas. Combustion in the porous medium is modeled as a spatially dependent heat generation zone. The homogeneous porous media, in addition to its...
متن کاملMHD Flow and Heat Transfer Analysis of Micropolar Fluid through a Porous Medium between Two Stretchable Disks Using Quasi-Linearization Method
In this paper, a comprehensive numerical study is presented for studying the MHD flow and heat transfer characteristics of non-Newtonian micropolar fluid through a porous medium between two stretchable porous disks. The system of governing equations is converted into coupled nonlinear ordinary ones through a similarity transformation, which is then solved using Quasi-linearization ...
متن کاملNumerical investigation of heat transfer in a sintered porous fin in a channel flow with the aim of material determination
Extended surfaces are one of the most important approaches to increase the heat transfer rate. According to the Fourier law, the heat transfer increases by increasing the contact surface of body and fluid. In this study, the effect of heat transfer has been investigated on two sets of engineered porous fins, in which the balls with different materials are sintered together. The fluid flow throu...
متن کامل